Oocyte-Specific Differences in Cell-Cycle Control Create an Innate Susceptibility to Meiotic Errors
نویسندگان
چکیده
Segregation of homologs at the first meiotic division (MI) is facilitated by crossovers and by a physical constraint imposed on sister kinetochores that facilitates monopolar attachment to the MI spindle. Recombination failure or premature separation of homologs results in univalent chromosomes at MI, and univalents constrained to form monopolar attachments should be inherently unstable and trigger the spindle assembly checkpoint (SAC). Although univalents trigger cell-cycle arrest in the male, this is not the case in mammalian oocytes. Because the spindle assembly portion of the SAC appears to function normally, two hypotheses have been proposed to explain the lack of response to univalents: (1) reduced stringency of the oocyte SAC to aberrant chromosome behavior, and (2) the ability of univalents to satisfy the SAC by forming bipolar attachments. The present study of Mlh1 mutant mice demonstrates that metaphase alignment is not a prerequisite for anaphase onset and provides strong evidence that MI spindle stabilization and anaphase onset require stable bipolar attachment of a critical mass--but not all--of chromosomes. We postulate that subtle differences in SAC-mediated control make the human oocyte inherently error prone and contribute to the age-related increase in aneuploidy.
منابع مشابه
missing oocyte encodes a highly conserved nuclear protein required for the maintenance of the meiotic cycle and oocyte identity in Drosophila.
In Drosophila, a single oocyte develops within a 16-cell germline cyst. Although all 16 cells initiate meiosis and undergo premeiotic S phase, only the oocyte retains its meiotic chromosome configuration and remains in the meiotic cycle. The other 15 cells in the cyst enter the endocycle and develop as polyploid nurse cells. A longstanding goal in the field has been to identify factors that are...
متن کاملCRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation
Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be exp...
متن کاملControl of oocyte growth and meiotic maturation in Caenorhabditis elegans.
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hor...
متن کاملPotential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation.
Protein tyrosine phosphatase nonreceptor type 13 (PTPN13) is a tyrosine phosphatase with multiple interacting domains that has been implicated previously in the regulation of apoptosis. We provide evidence that PTPN13 plays an important role in the control of the meiotic cell cycle. A cDNA coding for PTPN13 was isolated during the screening for the substrate of protein kinase A expressed in mam...
متن کاملWee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse
In most species, the meiotic cell cycle is arrested at the transition between prophase and metaphase through unclear somatic signals. Activation of the Cdc2-kinase component of maturation promoting factor (MPF) triggers germinal vesicle breakdown after the luteinizing hormone (LH) surge and reentry into the meiotic cell cycle. Although high levels of cAMP and activation of protein kinase A (PKA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011